463 research outputs found

    Electrodynamics of superconductors

    Full text link
    An alternate set of equations to describe the electrodynamics of superconductors at a macroscopic level is proposed. These equations resemble equations originally proposed by the London brothers but later discarded by them. Unlike the conventional London equations the alternate equations are relativistically covariant, and they can be understood as arising from the 'rigidity' of the superfluid wave function in a relativistically covariant microscopic theory. They predict that an internal 'spontaneous' electric field exists in superconductors, and that externally applied electric fields, both longitudinal and transverse, are screened over a London penetration length, as magnetic fields are. The associated longitudinal dielectric function predicts a much steeper plasmon dispersion relation than the conventional theory, and a blue shift of the minimum plasmon frequency for small samples. It is argued that the conventional London equations lead to difficulties that are removed in the present theory, and that the proposed equations do not contradict any known experimental facts. Experimental tests are discussed.Comment: Small changes following referee's and editor's comments; to be published in Phys.Rev.

    Applying infrared thermography to soil surface temperature monitoring: Case study of a high-resolution 48 h survey in a vineyard (Anadia, Portugal)

    Get PDF
    The soil surface albedo decreases with an increasing biochar application rate as a power decay function, but the net impact of biochar application on soil temperature dynamics remains to be clarified. The objective of this study was to assess the potential of infrared thermography (IRT) sensing by monitoring soil surface temperature (SST) with a high spatiotemporal and thermal resolution in a scalable agricultural application. We monitored soil surface temperature (SST) variations over a 48 h period for three treatments in a vineyard: bare soil (plot S), 100% biochar cover (plot B), and biochar-amended topsoil (plot SB). The SST of all plots was monitored at 30 min intervals with a tripod-mounted IR thermal camera. The soil temperature at 10 cm depth in the S and SB plots was monitored continuously with a 5 min resolution probe. Plot B had greater daily SST variations, reached a higher daily temperature peak relative to the other plots, and showed a faster rate of T increase during the day. However, on both days, the SST of plot B dipped below that of the control treatment (plot S) and biochar-amended soil (plot SB) from about 18:00 onward and throughout the night. The diurnal patterns/variations in the IRT-measured SSTs were closely related to those in the soil temperature at a 10 cm depth, confirming that biochar-amended soils showed lower thermal inertia than the unamended soil. The experiment provided interesting insights into SST variations at a local scale. The case study may be further developed using fully automated SST monitoring protocols at a larger scale for a range of environmental and agricultural applications

    Geometry-dependent electrostatics near contact lines

    Full text link
    Long-ranged electrostatic interactions in electrolytes modify their contact angles on charged substrates in a scale and geometry dependent manner. For angles measured at scales smaller than the typical Debye screening length, the wetting geometry near the contact line must be explicitly considered. Using variational and asymptotic methods, we derive new transcendental equations for the contact angle that depend on the electrostatic potential only at the three phase contact line. Analytic expressions are found in certain limits and compared with predictions for contact angles measured with lower resolution. An estimate for electrostatic contributions to {\it line} tension is also given.Comment: 3 .eps figures, 5p

    The MeerKAT Fornax Survey

    Full text link
    We present the science case and observations plan of the MeerKAT Fornax Survey, an HI and radio continuum survey of the Fornax galaxy cluster to be carried out with the SKA precursor MeerKAT. Fornax is the second most massive cluster within 20 Mpc and the largest nearby cluster in the southern hemisphere. Its low X-ray luminosity makes it representative of the environment where most galaxies live and where substantial galaxy evolution takes place. Fornax's ongoing growth makes it an excellent laboratory for studying the assembly of clusters, the physics of gas accretion and stripping in galaxies falling in the cluster, and the connection between these processes and the neutral medium in the cosmic web. We will observe a region of 12 deg2^2 reaching a projected distance of 1.5 Mpc from the cluster centre. This will cover a wide range of environment density out to the outskirts of the cluster, where gas-rich in-falling groups are found. We will: study the HI morphology of resolved galaxies down to a column density of a few times 1e+19 cm2^{-2} at a resolution of 1 kpc; measure the slope of the HI mass function down to M(HI) 5e+5 M(sun); and attempt to detect HI in the cosmic web reaching a column density of 1e+18 cm2^{-2} at a resolution of 10 kpc.Comment: Proceedings of Science, "MeerKAT Science: On the Pathway to the SKA", Stellenbosch, 25-27 May 201

    Low-temperature structural model of hcp solid C70_{70}

    Full text link
    We report intermolecular potential-energy calculations for solid C_70{70} and determine the optimum static orientations of the molecules at low temperature; we find them to be consistent with the monoclinic structural model proposed by us in an earlier report [Solid State Commun. {\bf 105), 247 (1998)]. This model indicates that the C_5 axis of the molecule is tilted by an angle \approx18^o from the monoclinic b axis in contrast with the molecular orientation proposed by Verheijen {\it et al.} [J. Chem. Phys. {\bf 166}, 287 (1992)] where the C_5 axis is parallel to the monoclinic b axis. In this calculation we have incorporated the effective bond charge Coulomb potential together with the Lennard-Jones potential between the molecule at the origin of the monoclinic unit cell and its six nearest neighbours, three above and three below. The minimum energy configuration for the molecular orientations turns out to be at θ\theta=18^o, ϕ\phi=8^o, and ψ\psi=5^o, where θ\theta, ϕ\phi, and ψ\psi define the molecular orientations.Comment: ReVTeX (4 pages) + 2 PostScript figure

    The Gas Content in Galactic Disks: Correlation with Kinematics

    Full text link
    We consider the relationship between the total HI mass in late-type galaxies and the kinematic properties of their disks. The mass MHIM_HI for galaxies with a wide variety of properties, from dwarf dIrr galaxies with active star formation to giant low-brightness galaxies, is shown to correlate with the product VcR0V_c R_0 (VcV_c is the rotational velocity, and R0R_0 is the radial photometric disks scale length), which characterizes the specific angular momentum of the disk. This relationship, along with the anticorrelation between the relative mass of HI in a galaxy and VcV_c, can be explained in terms of the previously made assumption that the gas density in the disks of most galaxies is maintained at a level close to the threshold (marginal) stability of a gaseous layer to local gravitational perturbations. In this case, the regulation mechanism of the star formation rate associated with the growth of local gravitational instability in the gaseous layer must play a crucial role in the evolution of the gas content in the galactic disk.Comment: revised version to appear in Astronomy Letters, 8 pages, 5 EPS figure

    Discovery of diffuse emission in the galaxy cluster A1689

    Get PDF
    The aim of this work is to investigate the possible presence of extended diffuse synchrotron radio emission associated with the intracluster medium of the complex galaxy cluster A1689. The radio continuum emission of A1689 has been investigated by analyzing archival observations at 1.2 and 1.4 GHz obtained with the Very Large Array in different configurations. We report the detection of an extended, diffuse, low-surface brightness radio emission located in the central region of A1689. The surface brightness profile of the diffuse emission at 1.2 GHz indicates a central radio brightness of ~1.7 \mu Jy/arcsec^2 and the 3\sigma radio isophothes reveal the largest linear size to be 730 kpc. Given its central location, the low-level surface brightness, and the comparatively large extension, we classify the diffuse cluster-wide emission in A1689 as a small radio halo.Comment: 8 pages, 6 figures, A&A accepte

    Si interstitial contribution of F+ implants in crystalline Si

    Get PDF
    The F effect in crystalline Si is quantified by monitoring defects and B diffusion in samples implanted with 25 keV F+ and/or 40 keV Si+. We estimate that about +0.4 Si interstitials are generated per implanted F+ ion, in agreement with the value resulting from the net separation of Frenkel pairs. For short annealings, B diffusion is lower when F+ is coimplanted with Si+ than when only Si+ is implanted, while for longer annealings, B diffusion is higher. This is consistent with a lower but longer-lasting Si interstitial supersaturation set by the additional defects generated by the F+ implant

    Gravitational stability and dynamical overheating of stellar disks of galaxies

    Full text link
    We use the marginal stability condition for galactic disks and the stellar velocity dispersion data published by different authors to place upper limits on the disk local surface density at two radial scalelengths R=2hR=2h. Extrapolating these estimates, we constrain the total mass of the disks and compare these estimates to those based on the photometry and color of stellar populations. The comparison reveals that the stellar disks of most of spiral galaxies in our sample cannot be substantially overheated and are therefore unlikely to have experienced a significant merging event in their history. The same conclusion applies to some, but not all of the S0 galaxies we consider. However, a substantial part of the early type galaxies do show the stellar velocity dispersion well in excess of the gravitational stability threshold suggesting a major merger event in the past. We find dynamically overheated disks among both seemingly isolated galaxies and those forming pairs. The ratio of the marginal stability disk mass estimate to the total galaxy mass within four radial scalelengths remains within a range of 0.4---0.8. We see no evidence for a noticeable running of this ratio with either the morphological type or color index.Comment: 25 pages, 5 figures, accepted to Astronomy Letter

    Selective Area Growth of PbTe Nanowire Networks on InP

    Get PDF
    Hybrid semiconductor–superconductor nanowires are promising candidates as quantum information processing devices. The need for scalability and complex designs calls for the development of selective area growth techniques. Here, the growth of large scale lead telluride (PbTe) networks is introduced by molecular beam epitaxy. The group IV-VI lead-salt semiconductor is an attractive material choice due to its large dielectric constant, strong spin-orbit coupling, and high carrier mobility. A crystal re-orientation process during the initial growth stages leads to single crystalline nanowire networks despite a large lattice mismatch, different crystal structure, and diverging thermal expansion coefficient to the indium phosphide (InP) substrate. The high quality of the resulting material is confirmed by Hall bar measurements, indicating mobilities up to 5600 cm2 (Vs)−1, and Aharonov–Bohm experiments, indicating a low-temperature phase coherence length exceeding 21 µm. Together, these properties show the high potential of the system as a basis for topological networks.</p
    corecore